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I. INTRODUCTION

The classical work of Dodd and his coworkers at the Oak Ridge National

Laboratory deals with the analysis, design and optimization of eddy-current

proble coils wound around an air core. Many applications, however, require

that the magnetic field produced by the probe coil be "shaped" or confined

to certain regions of space, especially at higher frequencies, and this

necessitates the use of highly permeable core materials, such as ferrites.

The problem we propose to solve is depicted in Figure 1. It consists

of an arbitrarily shaped body-of-revolution made of a ferrite (or other

highly permeable material), excited by a coaxial coil, and in the presence

of a plane-parallel stratified half-space of conducting materials. The

half-space simulates the workpiece, in eddy-current nondestructive evalua-

tion (NDE) parlance. As Figure 1 indicates, the system, composed of the

core, coil and half-space, is axisymmetric; this is the simplest, realistic,

three-dimensional problem of any degree of generality.

Though the model that we will develop is applicable to arbitrarily

shaped bodies-of-revolution, we will specifically attack the problems

posed by the core shapes of Figures 2 and 3. The E-shaped core of Figure 2

is typically used in low-frequency eddy-current NDE work, whereas the

truncated cylinder of Figure 3 Is used in high-frequency work. Again,

the problems posed by Figures 2 and 3 possess an axis of rotational

syuetry.

If the excitation of the ferrite is weak then the problem may be

treated as linear, which means, among other things, that there will be

no harmonic distortion of single-frequency sinusoidal signals. At the

outset of this investigation we make the small-signal, linearized

assumption, but we intend to lay out the appropriate paths to follow in

dealing with the more general nonlinear problem.

Cores that are made from powdered ferrite materials are isotropic,

but those made from single crystal ferrite@ are anisotropic. The math-

ematical approach that we use in developing the model will be sufficiently

general that it could include anisotropic core materials, as well.

The problem solved by Dodd, et al. (1-3] differs from ours in that

the ferrite core is absent. Thus, in the problem they solved the

I I I I I _ 1,
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excitation source was also parallel to the workpiece (i.e., there was

no irregularly shaped core to destroy the plane-parallel symmetry) and

this permitted them to solve analytically a number of important problems.

We can follow their analytical approach only so far (that point being

the determination of a Green's function), and then we must continue with

a numerical approach in order to compute the magnetization within the

ferrite core. Having computed the core magnetization, we can compute

the fields within the workpiece analytically, as well as the driving-

point impedance of the coil/core combination.

In a sense, Dodd et al.'s work brought eddy-current NDE "of age" by

showing how one could get useful analytical results basad on a rigorous

application of electromagnetic field theory.. In this paper we extend the

application of electromagnetic field theory to include numerical tech-

niques for analyzing the fields produced by complex structures. Our

approach is very much in the spirit of contemporary research in problem-

solving in electromagnetics (4,5].

We start by replacing the ferrite core by an equivalent controlled

source of Amperian currents, which, together with the true current in

the exciting coil, comprise the total source of the electromagnetic field.

The field is expressed as an integral over the regions occupied by the

source currents, i.e., the core and coil. The integrand is a vector

function of two arguments, one the source point occupied by the currents,

and the other argument being the field point at which the electromagnetic

field is to be evaluated. The Green's function computed by Dodd, et al.,

makes its appearance in this integral expression.

The controlled Amperian source current density is not known a priori,

however, because it depends on the value of the field at the source point.

Hence, we end up with an equation whose unknown appears both outside and

inside an integral operator--an integral equation for the unknown Amperian

source current density (which is directly related to the magnetization

of the ferrite core). This integral equation is reduced to an algebraic

system by the method of moments [63, and is then solved using a linear

equation solver. Having the Amperian and true currents, we can compute

the electromagnetic field at any point of space, including within the
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* workpiece, by straightforward integration. The derivation of the integral

equation and other analytical matters are the subject of Section II.

The transformation of the integral equation by means of the method of

moments is dealt with in Section III, and Section IV discusses some of the

* important numerical matters, such as computation of special functions and

infinite integrals, that are crucial to the model.

Results of the model are presented in Section V. In particular, we

show the approximate T field within the two cores, the driving-point

impedance as a function of frequency and the induced eddy-currents as a

function of radial coordinate and depth within the workplace.

A section on comments and extensions of the model concludes the

paper.

II. ANALYSIS

(a) Derivation of the Volume Integral Equation

In the sinusoidal steady-stata, Maxwell's equations are:

v xl - -jwl (l)(a)

Vxi- jWE0E+J (b)

But W -IF/vO -0 i so that (1)(b) becomes

ViE - jwp 0 0E +U0 VxK + 0o (2)

In (1) and (2) E is the electric field intensity, B the magnetic

induction, H the magnetic field intensity, R the magnetization (or magnetic

dipole-mouent per unit volume) and 7 is the true electric current density.

The curl of R in (2) clearly plays the same role as ' in serving as a

source for 1; this source term is the Amperian current density, It will

play a fundamental role in the integral equation.

Now let T - V x, E - -jua, where A a A# is the vector potential.

It has only a #-couponent because the curreLt density, J, does also. Thus,

3



A (and E) are solenoidal as long as the current density is. When these

new definitions are substituted into (2), we obtain the fundamental vector

wave equation for A:

V x V x 2-

k6A + V x M + V~ (3)

2 2

The parameter k W in air; within the workpiece the vector
2

wave equation for A is the same as (3), except that M= 0 and k =

W 2 P0 0 - JwPJ0
O , where a is the electrical conductivity of the workpiece

(we are assuming that the workpiece is a homogeneous half-space). The

magnetic permeability of the workpiece is the same as that of free-space,

V0' which means that the workpiece is nonmagnetic (though this is not an

important restriction), and the dielectric constant of the workpiece

will simply be assumed to be £0* Thoughout this development we include

the displacement current density, though it is negligible at the fre-

quencies of interest, even in air.

We begin the analysis by stating the vector Green's identity:

• V x V x - . V x V x idV -

0 S( xv xF-xv x ]-adS (4)

where the vector fields, P and Q, are arbitrary, except that they must

be well-behaved within V and on S. We are going to apply this identity

to certain Green's functions and vector fields, the vector fields being

the A-fields, which satisfy

V xV xA,- k A, ILV X R+ )0J, V x 7x A -kA2  a 0' (5)

in regions 1 and 2, respectively (see Figure 4). The Green's functions

satisfy

(r',%') in I
2- 2rr' d ,z (r,Z) in 1 (6)(a)

11 011 2l611*,011)(a)
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2- .(r',z') in 1

V xV x G21 -kG 0, (r,z) in 2 (b)
2 121

Clearly, the Green's function is the response to a circular filament

of current of radius r' located on the plane z - z'. The notation G

(r,z; r',z') denotes that the field point (rz) lies in region i, and

the source point (r',z') lies in region J, as shown in Figure 4.

Now apply the vector Green's identity to (5) and (6), letting P - G.

and 6-A. The volume of integration, V, must be broken into two parts,

corresponding to the two regions of Figure 4. The reason for this is

that the materials differ from region to region, and so the field vectors

will experience certain discontinuities at the surface separating the two

regions (z-0, in Figure 4). Hence, over region 1 we have

G 10V x V x A, - kOA'. Gll + *Ol V x M + p 0OGil 0

imx.x - - Srr6zAa
A,* X x 11 k0 A1 G1 1  2wr a eAl

The volume integrand over region 1 becomes, therefore:

• ' ° Vi - 2Irr A't

where A, Ala,. Now we integrate with respect to the field variables

(r,z,f), and get:

tu * r+ tiod. V xii - 6 (-'Szz)A']dV

S1

The surface S consists of the z-axis, the infinite spherical sector,

SSo, and the surface z - 0, as shown in Figure 4. The Integral along the

z-azis vanishes because there is zero surface area there, and we assume

that there exist no singular sources concentrated along the axis. The
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integral along S, vanishes because the fields A, and G 1 satisfy a

radiation condition at infinity, which means that there are outgoing

waves, only, at infinity. This leaves only the integral along z - 0,

which can be written:

*-2Wrf 0 A 1  x xG 1 1 - G1 1 1VZA]*a rdr

Hence, we have

Al~rz')- 27 Lo ff 7(rz) - G5l(r,z; r',z')rdrdz +

coil

+ 2WT0 •f V xG(rz) - 11(r,z; r',z')rdrdz + 2n.

core

•f[A1 (r,z) x V x jll(r,z; r',z')

- Gl(rz; r',z') x V x '(rzY] * rdr (8)

for the result of the integration over V1 , assuming that (r',z') lies in

V1 (recall the meaning of Gl1: both field and source points lie in V1 ).

Note that both the core and coil lie in region 1.

Now we continue with the application of Green's vector identity to

region 2. Here we use the second equation in (5), together with (6)(b).

Keeping in mind that the source point, (r',z'), still lies within region 1,

we get, after arguing as before:

0 - 2-rO[A 2 (r,z) x V x a21(r,z; r',z') - G21 (r,z; r',z') xV x (rz)](
X-0

a rdr (9)
z

* This integral, however, is proportional to the third integral in (8),

as the following argument shows. Use the scalar triple-product to rewrite

the integrand in (9) as
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i

(a z 2 • x G 21 - (z x G21) V x ;2 ] (10)

Now a x A is the tangential component of A, which is proportional2

to the tangential component of E, which must be continuous at the boundry,

z 0 0. Hence,

zA 2 -a. xA 1

at z 0 0. This is also the first boundary condition to be imposed on G:

z X G21 a z x G11

at z - 0. Therefore, (10) becomes

[(zxA) .VxG21 - x d .Vx I
z"0

[-(a X V X G 21 ) • 1 + (a xVx 2 ) G.] , (11)
ZM0

where we have again invoked the scalar triple-product. We note that

;-a2 xVXAL az V x ii I
1 O'Z0o 0 z.0

which expresses the continuity of the tangential R-fields at z - 0. Again,

we impose the same boundary condition on G:

Ii z 21Z10 - z 11 IZ-

and when this is put into the right-hand side of (11), we get

V 7

. ............. .... .........



[A, xOV x Gll - Xll 7, V x ;

which is V 1 /U0 times the integrand of the third integral in (8), as we

set out to prove. Hence, because (9) vanishes, so does the third integral
in(8).

To sunmarize, therefore, upon imposing the boundary conditions at

z 0:

a x G(r,z; r',z') x (r,z; r',z') (12)t

11

a x V x a2 1(r,z; r',z') - a x V x G(r~z; r',z')

then (8) becomes

Ai(r', z') - 27r. 0 i J(rz) C1 1(r,z; r',z')rdrdz

coil

+ 2J 0  JJ V x R(rz) -a 1 1(rz; r',z')rdrdz (13)

core

We emphasize that the differential operation in (12)(b) is with

respect to the field variables, (r,z). From here on we take p0 - V1

* as we stated earlier.

The magnetic induction is the curl of A:

I

8
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1(r,z) - V K (r,z)

-V x {a2r1Ja f ,(r,z; r'zv) J(r',zI)r'drtdzt}

coil

+ s {i2n0 ff5 (r,z; r',,:')'7' x F4(r',z')r'dr'dz'} (14)
core

where we have used the symmetry of 1

Gll(r,z; r',z') -nl(r',z'; r,z)

and we note that the curl operation is with respect to the primed variables

under the integral sign, and with respect to the field variables (the

unprimed variables) outside the integral sign.

The first term of (14) is the incident field, i(i), due to the coil,

and the second is the scattered field, B(a), due to the induced polarization,

1. We proceed to reduce (s) Start with the vector identity

G11 (r,z; r',zl) Vt x (r',z') -V' {G11 (rz; r',z') xMFr'Z')

+ i(r',z') V' x 11(rz; r',z') (15)

and write B)(rz) as:

(S)(r,z)- 2n0 Vx {ax Ji M(r',z')" V' x G(r,z; r',z')r'dr'dz'

core

;0 - fJ V- [511(r,z; r',z') x R(r',z')1r'dr'dz'}1. (16)

core

Upon using Gauss' theorem on the second integral, and extending the

surface of the core slightly beyond the (finite) support of R (R is

smooth, so that Gauss' theorem is applicable), the second integral van-

ishes. We are left with

9



1is)r,z) 2n 21 0 Vx i~f(r',z') *V1 x (1 r~z; r',z')r'dr'dz' (17)

core

The total field satisfies:

.(rz) - (r,z) + o . . '- • .. ,

- B)(rz) + 2n V x a, J l(r',z') - V x G1 (rz; r'z')r'dr'dz'

core (18)

To make this into a volume integral equation for B or M, we aote that

where )i is the permeability of the ferrite, so that (18) yields two equiva-

lent integral equations:

B(rz) (, z) + 27 V x af (1- -) B(r',z') V'

core

x Gll(r,z';r',z')r'dr'dz' (19)(a)

(-P)M(rz) *(B)(rz) + 27rp 0 V x ai JJ
core

M(r',z') V' x G1 1(r,z; r',z')r'dr'dz'. (b)

In either equation the unknown vector field can be expanded inI
vector pulse-functions, because the curl operation has been transferred

te the Green's function.

The curl operation in the unprimed coordinates will be "mollified,"

or smoothed, by using an appropriate test-function in the method of

moments. To see how this is accomplished, consider, again, the vector

identity that was used in (15):

10
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x -x . (20)

If P satisfies V x - 0, then (20) becomes 7 V x - -V, (Fx &).

When this result is integrated over a patch of space, and Gauss' theorem

invoked, we get

x V dV (x i d (21)

Patch Patch

This result is void of differential operators. This is what is

meant by "mollifying" an equation. We will use this on (19), treating

the bracketed term on the right-hand side as the vector

(b) Derivation of the Green's Function

The Green's function that appears in the integral equations, (19),

satisfies (6) and (12). Because there is only a *-component of G, these

equations, in cylindrical coordinates, reduce to:

a2Gll B2G 11 1 aGI1 GII 2 6(r-r')S(z--- 1+ + 11 -- +k;- 0 <zz' (22) (a)
3z2 23- r 0127rr'
2 2

a2G 21 1 1 G21 G21 2- + r -T -r - + klG21 0(b
az2  ar r r G21  0

s
G11(r,O; r',z') - G21 (rO; r',z') (c)

aG11  3G21  (d)
(r,O; r',z') - -z (r,O; r',z')

In going from (12)(b) to (22)(d) we have put U 0 -l .

In solving (22)(a) we must consider two subregions of region 1:

* : > z', z < z'. At z - z' we require that the Green's function be

contimous, but that there be a discontinuity in its slope. The amount

11
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of discontinuity can be determined by integrating (22)(a) over a small

interval about z':

3G aG6(r-r')
[Left-hand side of (22)(a)]dz =- I+ -= -- 2irr .

|z +z - e

Thus, the discontinuity in slope is given by

3 11 3G I -(r-r') (23)
z _ 27rr'

The solution of (22) is facilitated by using Bessel transforms. We

start by stating the fact that any function, f(r), can be expanded as

the double integral

f(r) - ToJn(r)Ldt o f(P)Jn(Zp)pdp (24)

which means that

-P) Fn(r)Jn( )&(  
. (25)

The second integral in (24) defines the Bessel transform, F(t),

of f(r).

We apply the Bessel transform to (22)(a) by writing

G11 (r,z; r',z') - f0l(z; r',z')Jn(r)w

0

Then

a2 G 1 3 11 G-

2 r 3r 2 Fall )
ar r 0

- J ()/(.r) 2 ,1

.. 1--' ' 12



But J () satisfies Bessel's equation

(z) + J,(Z)/z - Ji(Z)/z - -J (z) .

Hence, in the last integral, and hereafter, we let n - 1 and get

a2G 11 1 
2II G 2ar2 r Dr r 2 0 (t z; r',z')J (tr)tU

The z-derivatives are simply

2 2

a2Gl d2G 11

3z 2= FOd 2 (t,z; r',z')J(tr).tdt

Upon assembling these results, together with (25), into (22)(a), we

get

d-11 + (k2-t2)6 ]J (tr)d"t -6( z) f (rl)J1 (r'L)ta . (27)

T0 dz2

Since this holds for all r we may simply equate integrands to get

an ordinary differential equation for the Bessel-transformed Green's

function:

d 2ll 2J 1 (rf)
--- + (k0-t

2) 1 1  - 6(z-z') 2 , 0 < z,Z' (28)(a)dz2 +---

Similarly

* d2r21 2t(k 2

d 2  ~ 1  21 013 z<0Z' > 0 (b)

13



The boundary conditions (22)(c),(d) and the discontinuity condition,

(23), when expressed in terms of the Bessel transforms are

( (,0; r',z') - t21(L,0; r',z') (c)
.21

1, 0; r',z') - ±21 (eO; r',zt) (d)
dz dJ

dd -
1(1 z'+; r',z') dz (Z,z'; r',z') - (rt) (e)dz +d 7

Also, we have continuity of 1 at z - z':

ll(t,z ; r',z') - l(,z.'; r',z') Mf

Solutions of (28)(a) in the appropriate subregivns are:

-a0(z-z')
(, r',z') - Ae , z > z' > 0

--a 0(z-z') a 0O(z-z')
= Be + Ce ,z'>z > 0 (29)

2 2 1/2
where 0- (t -k 0) . Equations (28)(e),(f) are applied to determine

relations between the arbitrary constants A, B, C:

A- B - C 0 (30)(a)

J1(r '1)
A-B+C- 2- °  (b)

The solution of (28)(b) requires only a single arbitrary constant:

d 21(.,z; r',z') - De , z < 0, 0 < z' . (31)

Ip 14



where (1, (t2-k2)1/2. When (28)(c),(d) are applied to (29) and (31),

we get the final two equations

-G. z' a0z' -aOz'

De a . Be + Ce 0 (32)(a)

a0 z' -a z' -a zP
.0aBe + a OCe  0 CLDe 1 (b)

The solution of (30) and (32) is readily found to be

a -a -2az? Jl(r')
A e 0 + 4aO (33) (a)

-2a 0z '

O0 -a 
J1 (r')e

(b)

1 0 t
J (r'Z)

47M
o

-(CLo-a )z'
J (r'0)e
1 (d)
(aO+a,) 2w

The final expression for the Green's functions is obtained by

substituting (33) into (29) and (31), and then that result into (26):

G r(r,z; r',z') R) + o J (r'l)J 1 (rt)C4., z>z'>O

0

R - F 2a0  Jl(r't)Jl(rt)tdL, z'>s>O

0

p 15



-a C 0 (z+z') -a 0ZZ

2a J(r'L)J1 (rL)tdt, zz'>O (34)(a)

00 1 ToTOe (a 1z-aOZ')
G 21(r,z; r',z' 2v 0 . J 1(r't)JlI(rt)tde (b)

We have defined

0-al a
R o--, T - % --- (35)

in (34). We have already alluded to the fact that G 11 is symmetrical under

interchange of source and field coordinates, and (34)(a) verifies that

fact. The final form of GI in (34)(a) is merely a compact representation

that includes the first two.

Now that we have the Green's function that is to be used in (19),

we can proceed to transform the integral equation into vector-matrix form.

III. REDUCTION OF THE INTEGRAL EQUATION TO

VECTOR-MATRIX FORM: THE METHOD OF MOMENTS

From here on we will work with the integral equation (19)(a). The

starting point in the numerical reduction of this equation is to parti-

tion the core in a regular grid, as shown in Figure 5 for the cylinder.

Based on this partition, we expand the unknown field in pulse functions

Vt NC

i(r,z) Z i P (r,z), (36)

or In component form

16.



N

Br(rz) - b (r)( )(r,z) (37)(a)

N
B z(rz) " E b l P (r,z) , (b)

j I

where {b (r), {b(z)) are the expansion coefficients for the r- and z-
* I

components, N4 is the number of cells in the grid and P (r,z) is the Jth

pulse function, which is defined by

P(rz) - 1, (r,z) in jth cell (39)

- 0, otherwise.

Upon substituting (36) into (19)(a), we get

N N

r B P (r,z) (rz) + ZV x a27r j
jth cell

(1- U-)B1 (r',z') V V' x Gl(r,z; r',z')r'dr'dz'. (39)

The next step in the method of moments is to take moments of (39),

i.e., to multiply (39) by testing-functions and then integrate. For our

testing-functions we take the sane functions, VPI(rz), where V is

either (r/rb)'r or , as for expansion, (36). When the same functions

are used for expansion and testing, the method is called the Galerkin

variant of the method of moments. Thus , the result of taking maments of

(39) is

N

J ith cell ith cl

EJ V JV z{a fj*r(r,r)drdrd , (40)

ith cell

17
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where we have writtenS

(r z) 2 --) (r' (rz; r',z')r'dr'dz'

jth cell

(r) UO r, - (,z; r',z')

1 b 2W ( -T(b) * ( )r'dr'dz'

jth cell

+. b(z)2 r JJ (l1O F3Gu(rz_r',z') G 11 (r,z; r',z' 'rdz.(1
it cl r+ r' r'dr'dz'• (41)

jth cell

Recalling the definition of P allows us to reduce the left-hand side

of (40) to

61. I V " B rdrdz (42)

ith cell

The first integral on the right-hand side of (40) becomes the forcing-

function vector, F

Because V x V 0 0, the second integral on the right-hand side of (40)

may be reduced by the use of (21), with the result that the integral

becomes

n [axV ' af(r~z)dA
ith cell

where the contour integral implies an integral over the boundary of a

two-dimaenLsional cell. Upon referring to Figure 6, this integral may be

written

I
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rrW

x ]af(r,z)dA f(r, )(a, x V) 2rdri (_) jz
ith cell r

(+) r
i W W4 f V) abfjzrz(-) *

+ J (r zr (ao x V)ad )(a x V) i rdr

-- 
) f i Z)r (a, x V) * a)dzd 

(43)

zi

Now we let V (r/rb)i r in (43), and get

r(+)

( ))

[at x ] nl(r/rb)f(r,z)d - J (r/r )fj(r,zi )rdr

ith cell It

(+)
ui (( )f ( , ))dr (4)(,
rJ -) b ji )d

Ti

Similarly, when -a z

x f (r,z)dA f .... ). . . -

ith cell ... -z"

f (r(- ,X)4()dz *(44)(b)

7 i.

Upon substituting (41) Into (44)(&),(b), we set, respectivelY,

19
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r - r

b 211 (--rr _79

r ijth cell

rb

r i jth cell

IG,,(r~(-)ri~' .1,(r, z rzi)

a ry r'dr'dz'(4)a

z th cell

* r ) 3 G . ( r i ,; r' .z ) ( ) .G 11  (r i Z; V,z r'drz')

+ b~z)2wr di 5 (1- P
zj th call

ac 11 + ,Z; r' ,z') G11 (r1 ),z; r',Z)

+ 111 r

(r(-) r,z1

r ~LG ( r'dr'dz' (b)

j __ ____ ____ ____ ____20



* We can now start to assemble the matrix equations. When -(r/rb);r

in (40) we get, upon using (42) and (45):

(r) 2
b~r fJ (~ rdrdz - 27ru110 (i (j- -)rdr i

ith cell rb r,-) b coil

(G11(r,z(-); r' ,z'). - G,(~(+); r' z')] J(r',z')r'dr'dz'

+ Z 2b (4-.) rdr JJ (~(!)

i-l i th cell jir

FaG l(r z(+); r',z') 3G11(r,z (-). rI'z'I

*L ~ az' a:i r'dr'dz'

N r+

+ (Z)l 21r f (trdr (l 0--
r ith cell

[3G11 Cr,z ± ; r' ,z') G 1(r~z~ ; r',z)
r r

aG11 (r* i ; r .z ) G11 (r~z~ i r',2') rd'z

i - 1, .,N.(46)(a)

and when z (40) becomes
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b(z) r rdrdz 274 01 dzff
ith cell coil

• ( +z; r',z') -r 1G ,z; r ,z')] J(r',z')r'dr'dz'

N Z(+ )

Nc (r) i (l r
" Zb )2n f dz jj

j'l C-) jth cell

1z1 1 r( )z r'dr'dz'

8i z - az'j

N Z + )

+ bZ)2 7 r dz (I--) °

Ju f(-) jj I
zi  Jth cell

+ 3G (r +),z; r',z') G (r ),z; r',

r l)aG 11(ri z r',z') G (r , z; r z rd''
- r ~ Lr + 11

i ayr' + r r'dr'dz'

i - 1, ..., N C (46)(b)

where the first term on the right-hand side of these equations comes from

substituting B in (14), into the first term on the right-hand side of

(40), and then using (21) to mollify the term, as before.

These equations can be put into the following matrix form:

2
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(r) (rr)II -(rz) 1 (rTI r(r)1
Ail G 1 I -

.. . .. -" --- --- -- - ------. . (47)

L G(zr) *A(ZZ) - (zzj (Z)i(

The overall system-matrix is of order 2N x 2N .c C

The elements of the submatrices and. forcing-function vectors can be

reduced to infinite integrals by substituting the Green's function,

(34)(a), and its curl-components, into (46). The components of Vx G

are given by

1 r',z') 1 R[ -[ o(z+z) .. a J (r')J (rL)z

(-): z' > z

(+): z > z' (48)(a)

aG11 (r,z; r',z') G11 (r,z; r',z') 1 Re- 0(z+z') + -a 0 Iz-z

+'- ~ J~OWZ)ar' +r' =2T 2a 0

0 1 5(rZtdZ (b)

In evaluating the integrals that define the matrix elements, we

interchange the orders of integration with respect to (r,z, r',z') in

(46) and those with respect to the transform variable, Z. The results are:

Wr 0 'Oc' IF (z ,z )F (zi H z ) + 2- (+)*zi " rb '0  L( ")2'-)[ )  %j

r(r ,r M (r5-) Z r (+) (49)(a)
S 12 2 i 'i d
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F-(z) I 0 z j,~~2
0 i

l(r £,r L)
. 2 dt (b)

G(rr) - o

rb 0

RO lz z )p (z~ ,z )+ F (z z1  ,z~ F (z1  zi .zi

2 2 1 dZ (C)

(zz) -(1- 1 F [ 1(z i z 1F2zz +% zi

UrI (tri )Bt (d)

G(rz) ( '

(-) () C- (.e- (() -F (+),Z(+))

[E2F 1( F1 ( z j i 2% 3
2i 1 dt (e)
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(4)) (4

dz J t tr is b(Zi tr~ i M(i/b
t) 3

z r
i ir+/b4 r/b

z(+I) r(+)
z ( (+) 2r)' ((-)/r 2

A (zz) -6dz rdru r2 (~ z(+)Ir)- / (h)
j ij irb i zi 2

C(-) r(-)
:1 i

The functions used in (49) are defined here:

F (a~b)aj e 0 dz- 0 (50)(a)
f a0

a

F~bc -b e(&C- dz -a (b-c)

FIabc al-ld 130- 0 c< a
a

2-e-a 0 (C-a) e-oto(b-c)

a0

aab< (b)
10
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F (+)~z-,Z+)2d' z aOI-
3 1 dz f f:z' 1 2 3 4'

z z

11 2xf/a -a 0 x1 2 x > -,az'- z
1 10 IO , 1 >02

ue 01/c 2 <0

12 2011 ~2> 2 ± 1

e 2 < 0

I-2x /a + e-' /a 2x>0 -) -z3 30 0 30 x3  ± 2

03 3

I Zx /ao + e 0 4 x- -z
4 4 4 1. 1

01X4 2

F 4(a,bc) f (+ 0 dz, c < z
a () 5< c

- -cio(a-c) -m. (b-c) c c<a (d)
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-a0 (c-a) -a 0 (b-c)

0

=--o (-a) -O cC-b)
•-e ,b<cC)

b ~~ <a c-z
ao 0 (d)

F5 (a,bc,d) J dz dz' (+e ) (): z < z'

a c (-): z' < z

F2 (a,b,c) - F2 (a,b,d)
a 0 (a)CL0

b

81 (a,b) - f zJ0 (z)dz - bJ1 (b) - aJ1 (a) (f)

a

b

B2(a,b) -f z2J1(z)dz = b2J2(b) - a2J2(a) (g)

a

b

I(a,b)- J zJ1(z)dz (h)

a

We will discuss the computation of the last three functions in the

next section.

An interesting feature of the matrices in (49) is their symmetry

relations:

G(rr) = rr) .(zz) a G(zz) (rz) . (()
Gii "j -G ij , Qj zj •)

These relations, which reduce the time to compute and fill the

system-matrix, are a result of using the Galerkin variant of the method

of moments.
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In deriving the forcing-function vector in (49)(a),(b), ye assumed

that the coil is uniformly and densely wound with n turns per unit area,

that it occupies the rectangle r1 < r < r2, z1 < z < Z2, and that it

carries a current of I amperes.

IV. NUMERICAL ANALYSIS: COMPUTATION OF

SPECIAL FUNCTIONS AND INTEGRALS

The method of moments, or any other scheme that is used to generate

numbers, depends critically on effective numerical methods. The end result

of the method of moments is the vector-matrix equation (47). We solve

this equation very efficiently by using a linear equation solver that

employs the Crout algorithm to factor the system-matrix (we do not use

matrix inversion, because that is less efficient). The algorithm uses

scaled partial pivoting and back substitution; it is implemented in complex

double-precision on the computer.

(a) Computation of Special Functions

The Bessel functions, J0 (z), Jl(z), J2(z), that appear throughout

the vector-matrix elements of (49), are easily computed by appealing to

a series expansion when abs(z) < 10, and to well known asymptotic

expansions when abs(z) > 10 [7, Ch. 9].

The computation of the Bessel-function integral, (50)(h), is based

on the fact that [8, Vol. 1, p. 219]:

n m+nfl 12 n~)/ Z ~2

It'm n t)dt 21 F 2 .!!3/2 l (52)02n(m+n+l) r (n+l) I2 (en3/,uZ " ' (2

where z is a complex number and IF2 is a generalized hypergeometric

function. Here, m - n - 1, so that

$ tj Wdt 3 F 52, 2 --2 (53)

0
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I

* Now

f3/2 -
52, 2 "k ' (54)

where

2 k
(-z /4)k (55)a0 - , k - (2)k k I (2k+3) (5

Hence,

(-z2 /4) (k + 3/2)
'k+l (k+2)(k+l)(k +5/2)'" ak

is the recursion relation to be used for the series expansion, (54), when

aba(z) < 10.

For abs(z) > 10, we need an asymptotic expansion for (54). Again,

from (8, p. 199] we have

F 3/2 -26
1 2 5/2, 2 " (24)1/2 (z) 5/2

{J (a5v4 H) k (..k/zk + .-J(z5r4) . £(j)k d k}k (57)

where the coefficients, {4k), satisfy the recursion relation

SI

do -1, d1 - -7/8, 2(k+l)dk+1 
= (3k2 + 2k - 7/4)d k -

- (k + 3/2)(k - 112)(k - 3 /2)dkl . (58)

The final fors of the asymptotic expansion is, therefore:
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z 
{ -F( 

z -S w / 4 ) . ( _ ) k 

c (+ 
-

k 4

0 + e-J(z-5/4)r(J)k dk/z k  
(59)

The additional term of unity comes from the fact that

J t 1 ()dt _ - o(z) + J 0 (t)dt

0 0

S (Z) - Jo(t)dt + JO (t)dt
z 0

- 1 - zJo(z) - J0(t)dt (60)

Z

which agrees with (59).

(b) Numerical Evaluation of Infinite Integrals

The computation of the infinite integrals that appear in the matrix

elements, (49), is performed by computing a sequence of partial sums of

integrals over finite intervals and then applying the c-algorithm in an

attempt to accelerate the convergence of the sequence (9]. The finite

integrals are computed by using a 30-point Gaussian quadrature; the length

of the finite interval is determined empirically. The method has been

used in other numerical electromagnetic codes [10].

V. RESULTS

After (47) is solved for the expansion coefficients, {b(r)}, {b()),

the results are then substituted into (37) to produce the components of
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the Induction field, B, within the core. With this field in hand it is

possible to compute other functions. In this section we illustrate some

of the results that have been obtained for the E-shaped and cylindrical

cores. Some of the results correspond to the workpiece being absent, in

which case {b(r)} and fb ( ' ) ) are real. When the workpiece is present

(b (r)) and {b(z ) ) are complex.

(a) Approximate B-field Within the Core

Figure 7 shows the approximate B-field within the cylindrical core,

and Figure 8 shows the same thing for the E-shaped core, both when the

workpiece is absent. In each case the line segments represent the approxi-

mate field at the center of each cell of the grid that was used in the

method of moments. The line segments are shown emanating from the bottom

or top line of a cell simply to facilitate the presentation.

The radius of the cylinder is 0.0625" and the height is 0.500".

The inner radius of the coil is also 0.0625", the outer radius, 0.125",

and the height is 0.250". The outer radius of the E-shaped core is

0.1875", and the height is 0.500". The same coil is used with the E-

shaped core as with the cylinder. The permeabiity of the core is 1000 10.

We note that B is generally smaller in magnitude for larger radii.

This means that, because the cross-sectional areas increase with in-

creasing radius, the net magnetic flux entering the region is equal to

the net flux leaving, as is to be expected from the condition V * B - 0.

Indeed, we have computed an approximate value of V * B at one point

within the cylindrical core and have found it to be zero, certainly within

the accuracy of the expansion in pulse functions. This is a very desir-

able feature of our results; it shows that the model produces physically

consistent and accurate results with the grids shown.

(b) Driving-point Impedance of the Coil and Core

The driving-point impedance of the coil is defined to be the ratio

of the coil's induced voltage to its current. The voltage induced into

a single turn of the coil located at (r',z') is given by
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dZ -Jw2r'A(r',z') (61)

which follows from the fundamental relation J - A. The coil is uni-

formly and densely wound with u turns per unit area and occupies the
C

rectangle r1 < r < r2, z < z < 2, as before. Hence, the net voltage

induced into it is given by

r z

V = JW27u c  rA(r,z)drdz (62)

r1 z1

The coil, of course, is in region 1, and the vector potential

throughout region 1 is given by (13), which, after using (15) to trans-
I 1fer the curl to the Green's function and then substituting M - B (- -

becomes 
;10  1

A(rz) - 27r0o JJ Gll(r,z; r',z')J(r',z')r'dr'dz'

coil

+ 2W (1 - V..)Bzr',z') V x -(r,; r',z')r'dr'dz' . (63)

core

Thus, the induced voltage is given by substituting (63) into (62)

r2  2  r2  2

V Jw(2r) n c T 0  rdr J dz r'dr' dz'Gll(r,z; r',')

r 2  z 2

+JW(27) 2n f rdr dzJ (1-I )%(r"")

r z cOr

V ' x G 1 (r,z; r',z')r'dr'dz' . (64)

3
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The first term on the right-hand side of (64) is the voltage that is

induced into the coil in the absence of the core (the coil self-voltage),

and the second term is the additional voltage induced into the coil due

to the induced magnetization within the core. Upon using the expression

for the Green's function, (34)(a), and then carrying out the integral in

the first term of (64), the coil self-voltage becomes

Jw2nn 2 1 r 12 ;: 3 1 2, 2 1  1 2 ) d, (65)

where FI, F3, and I have been defined in (50).
The second term of (64) is evaluated after substituting (48) and

(37), and then evaluating the integrals with respect to (r,z) and (r',z').

The result is

N

jw27r(l - -mn Z (b(r)F(r) + b (zF z))/1 n , (66)
I' cj1  J J 1 0c

where F(r) /onI , F Z)/n I are the integral expressions of (49)(a),(b).

The total voltage induced into the coil is the sum of (65) and (66),

and when this is divided by the coil current, 1, the result is the driving-

point Impedance.

We have computed the driving-point impedance at four freuqencies,

and present the results in Table 1. The columns in the table correspond

to the dirving-point impedance of the coil alone, coil+cylindrical core,

and coil+E-shaped core. The data are in ohms, and correspond to the dimen-

sions stated in Subsection (a). The numbers in parentheses are powers of

ten that multiply the adjacent number: for example, JO.2958(-2) =

J0. 2958 x 10 " 2. As a benchmark calculation to test the accuracy of our

integration subroutine that uses the e-algorithm (recall Section IV. (b)),

we computed the inductance of the coil in air and compare it with the

classical work of Grover 11]; the results are in excellent agreement.

The inductance of the coil in air is determined from the first column

in the upper-half of the table.
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TABLE 1: DRIVING-POINT IMPEDANCE AT FOUR FREQUENCIES

AIR

COIL CYLINDER ESHAPE FE

jO.2958(-2) jO.1554(-i) jo.3271(-1) ikHz

JO.2958(-1) JO.1554(-O) JO.3271(-O) lOkHz

JO.2958(-0) JO.1554(+i) JO.3271(+1) 100kHz

JO.2958(+1) JO.1554(+2) JO.3271(+2) 1MHz

WOERKPIECE

COIL X(-3) CYLINDER X(-3) ESHAPE X(-3) F 1

0.1075+j2.854 1.360+J13.84 1.401+J31.93 1kHz

1.284 +J26.37 10.77+J115.9 23.11+J279.9 10kHz

6.385 +J249.2 41.84+j1060.O 93.83+j2556.0 100kHz

23.14 +J2440.0 113.3+Ji0298.0 200.4+j24854.0 1MHz

BENCHMARK CALCULATION

INDUCTANCE OF COIL IN AIR

0.471 (-6) H (OUR MODEL)

0.473 (-6) H (GROVER, "INDUCTANCE CALCULATIONS," VAN NOSTRAND, 1946)

ALL CALCULATIONS ASSUME A CLOSE-PACKED COIL OF 20 GAUGE WIRE, CONSISTING OF

15.3 TURNS.
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A more common presentation of the data in Table 1 is the impedance-

plane plot of Figure 9. Here the real and imaginary parts of the driving-

point impedance are displayed, with frequency as a parameter. The three

curves correspond to the coil alone, coil+cylindrical core, and coil+E-

shaped core, each in the presence of the workpiece. The interpretation

of the diagram is that the coupling to the workpiece becomes tighter in

going from the coil alone to the coil+E-shaped core.

The reactive part of the driving-point impedance is due partly to

the self-inductance of the coil+core combination (as if the workpiece

were absent) and partly to mutual interaction of the induced eddy-currents

within the workpiece. The resistive part of the impedance is due entirely

to the effects of the induced eddy-currents. At higher frequencies the

eddy-currents reside nearer the surface of the workpiece, due to the skin-

effect, therefore making the volume of interaction within the workpiece

smaller. This means that the volume losses within the workpiece decrease,

thereby decreasing the effective resistance of the workpiece, making the

driving-point impedance of the coil+core combination reactive.

(c) Induced Fields Within the Workpiece

The purpose of the probe coil is to induce eddy-currents within the

workpiece. It is a fairly straight-forward computation to determine the

distribution of induced eddy-currents, once the induced magnetization

within the core is known. The fundamental relation is

j 2 (r,z) - OE2 (r,z) -- Jwai 2 (r,z) , (67)

where the subscript "2" denotes region 2, the workpiece, and a is the

conductivity of the workpiece. Hence, our first job is to determine an

integral expression for A2(r,z) in term of the current and magnetization

in region 1, where the coil and core are located. The details follow the

method of Section 1I.

We start by replacing (6)(a),(b) by
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V x V x G - k G 0 (r,z) in 1 (68)(a)
12 0 12

(r', z') in 2

V x V x 2  - ( z(r-r')6(z-z')
22 1 22 2rr' ab (r,z) in 2 (b)

(r',z') in 2

Next, we multiply (5) by the appropriate Green's functioL from (68)

and then use the vector Green's identity over regions 1 and 2, as before,

to get

21Iui 0 f J(r,z)G 12 (rz; r',z')rdrdz + 2'irp 0 Jf V x (r,z) * -2 (r~z; r',Z')rdrdz

coil core

-2r[ (r,z) x Vx G12 (r,z; r',z')-G 1 2 (r,z; r',z') xVx 1 (r,z)]I • rdr (69)

0 z-O

A2 (r',z') -2n F(1 2 (rz) x V x G2 2 (r,z; r',z') -

0

- G2 2(r,z; r',z') x V x A 2(r,z)] z " rdr (b)

z-0 z

which replace (8) and (9), respectively.

The boundary conditions on G12 and G22 at z - 0 are:

a i a x G
z x G12 z 22

1 az xvx22 12

Arguing as before in Section I, -e can show that the integral in
(69)(b) is U1/P0 times the surface integral on the rfght-hand side of

(69)(a). Therefore (69)(a) may be written
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A2 (r',z')- 2n, JJ J(r,z)G1 2 (r,z; r',z')rdrdz

coil

+ 2n 1 JJ V x M(r,z). G1 2 (rz; r',z')rdrdz . (70)

core

There exists a reciprocity relation between G12 and G21:

UiG12 (r,z; r,z') - vt0G2 1 (r,z; r',z') , (71)

and with this (70) becomes

k2(rz') - 21TUO JJ G21(r',z'; rz)j(rz)rdrdz
coil

+ 2NU10 JJ V x R(r,z) - 2 r',z; r,.)rdrdz (72)

core

This is the desired form because we have previously computed G21 in

(34(b).

As usual, we transfer the curl operation to the Green's function in

the second integral of (72) by using (15), and then we substitute

r2  2  T

A2 (r',z') 0 0 rc f f 0 • -c )
r zI  0

U3 0 a az-aZ

+ U rdrdz(l - -)B (rz) 1 Jlz ' t)0 J Te l O Jl) (rL) dt)
JJ IA rcore 0

+ rdrdz(l - -)B (r,z) Te ( I-a 0 Z) 2(r )edt (73)
if VIJF

core 0
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When (37) is substituted into (73), and the integrals with respect

to (r,z) and (r',z') are evaluated, we get the final expression

00 (r I1r 2L, 2)
A2(r',z') I Tt Fl(Zlz 2) i e'z'J(rL)

0

N0 c (r) (r) W (z))
+ (1- E-) Z (b) C + b )C (74)

where

W~r 1 2(tr(-) ,tr(+)) ft,

r1 T(t)Fz ' 2 ] e i JI(r't)dt (75)(a)

rb J T(£)FI(Z ) z+) ) 2
0

c(Z) . T_ F 1 ,z ( )8 (tr(- Zr +))elz'J (r't)dt (b)
0

Using (74) we have computed the induced E-field in air, and the in-

duced eddy-currents in the workpiece, as a function of radial position

at two depths, z - 0 and z - -2.7mm, as shown in Figure 10. The latter

depth is the skin-depth in aluminum (a - 3.5 x 107) at lkHz.

In Figure 11 we show E in air at these two depths, the three curves

corresponding to the three core/coil combinations, coil alone, coil+

cylinder, and coil+E-shape. The reduction in field intensity at -2.7m

is not due to skin effect (the workpiece is absent), but is simply due

to distance; this is a manifestation of "lift-off." It is clear from

part (a) of the figure that the coil alone produces the weakest field

and that the E-shaped core produces the strongest peak. This is to be

expected. A more interesting result, however, is that the E-shaped field

falls off very quickly, and becomes the weakest of the three fields beyond

the radial limit of the core. This is due to the fact that the net mag-

netic flux that is linked by a circular path beyond this radius is prac-

tically zero, because virtually all of the flux leaving the outer leg
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p

returns through the middle leg. Hence, we conclude that the E-shaped core

is effective for producing an intense, concentrated field. The results

of Figure 11 are independent of frequency over the range lkHz to 1MHz.

The presence of the workpiece enhances the concentrating effect of

the coil/core combinations, as Figure 12 shows. Here, the induced eddy-

currents are shown at lkHz. The fields now are complex, so that the real

and imaginary parts are both shown, the imaginary part dominating. If the

curves of Figure 11 are compared with the curves of the imaginary parts

(marked "I") of Figure 12, it will be seen that the latter curves fall

off more rapidly with r, for all three combinations of coil and core.

This enhanced concentration is due to Lenz' law, which states that in-

duced currents flow in such a direction as to oppose the flux that pro-

duces them. If the flux is reduced then the electric field and eddy-

currents must fall off more rapidly with radial distance. The reduction

of the fields at -2.7mm, as shown in part (b) of the figure, is now

principally due to skin effect.

The effects of increasing frequency are shown in Figure 13, which

illustrates the real and imaginary parts of the induced eddy-currents

at 11Hz. At this frequency these parts are approximately equal, and

the fields vanish, due to skin-effect, at -2.7m m (which, it will be re-

called, is the skin-depth at 1kHz). The rather erratic nature of the

curves that correspond to the coil+cylinder and coil+E-shape combinations

is probably due to numerical instabilities in computing the coefficient

Integrals C(r) and c ( z ) of (75). We are presently investigating methods

for smoothing these data.

In all of the cases that are illustrated in Figures 11-13, it is

clear that the E-shaped core is most effective in coupling energy into

the workpiece, as was first suggested in the discussion of Figure 9.

This is another indication of the internal consistency of our model.

39I



VI. COMMENTS, EXTENSIONS AND CONCLUSIONS

Our objective in this report was to apply modern methods of computa-

tional electromagnetics to develop a model of eddy-current probe coils

with ferrite cores, which would provide a systematic and rational basis

for the design and characterization of such coils. The model that we

have demonstrated meets this goal; in addition, it is physically and math-

ematically consistent.

Our approach was to tae a volume integral equation and the method of

moments. Other approaches are available, namely finite elements, and a

surface integral equation plus the method of moments. The volume inte-

gral equation approach resulted in a simpler model, that required only

a single Green's function (for the whole of regions 1 and 2), rather than

a Green's function for the interior of the ferrite core and a separate

Green's function for the exterior, as would have been required in the

other two approaches. This resulted in simpler programming for the com-

puter. It is usually true, however, that different problems favor dif-

ferent methods, and one must be familiar with all approaches in order to

select the one that is most efficient.

The model that we have derived is useful for the analysis of probes

with linear, isotropic ferrite cores. It can be extended to apply to

the following problem areas, all of which are important in contemporary

eddy-current NDE technology:
a Analyze probe coils with anisotropic (single

crystal) cores
a Time-dependent (pulsed) eddy-current problems

(linear core)

• Time-dependent (pulsed) eddy-current problems

(nonlinear core)

* Optimization of probe coil design to satisfy

simultaneous constraints on eddy-current

distribution and driving-point impedance

In principle, the only extension that is required of the present

model in order to treat the first and third problems is to define a
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different B vs. M relationship than the one used here. For the single

crystal problem this relationship would remain linear, but would involve

a tensor permeability, rather than the scalar p.

The nonlinear problem probably can be approached through the theory

of micromagnetics [12], which would require the simultaneous solution of

a volume integral equation of the type described in this report and a non-

linear partial differential equation (the fundamental equation of micro-

magnetics). It is possible that the best approach to the numerical com-

putation with such a model would be a combination of finite elements and

the method of moments.

All of these problems are solvable; they only require a sustained

modeling effort. The rewards for such an effort could be immense in terms

of improved design and understanding of probe coils with ferrite cores.
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Figure 1. Ferrite core in the shape of a general body-of-revolution,
with its exciting coil, in the presence of a stratified
half-space workpiece.

43



FERRITE CORE

COIL I

$

WORKPIECE

Figure 2. E-shaped body-of-revolution with exciting coil.
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Figure 3. Truncated cylinder with exciting coil.
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Figure 4. Showing the two regions and surfaces that are used in the
application of the vector Green's identity to the derivation
of the volume integral equation.
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figure S. A partitioning of the cylindrical core into a regular
grid, for applying the method of moments.
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Figure 6. Definition of ith cell boundaries, for computation of
Integrals.
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Figure 7. Approximate §-field within the cylindrical core.
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Figure 9. Impedance-plane plot of driving-point impedance.
a coil alone9 (b) coil+cylindrical core,
) coil+E-shaped core.
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Figure 10. Showing coll~core and region of workpiece, or air, in

which eddy-currents, or E-field, are calculated.
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Figure 11. E-field in air at surface, (a), and -2.7mm, (b), levels
of region of Figure 10.
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Figure 12. Induced eddy-currents in workpiece, at 1 kHz. (a) surface,
(b) -2.7mm. Rureal part, Iimaginary part. Upper-left
legend indicates radial extent of core-shapes and coil.
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Figure 13. Induced eddy-currents in workpiece, at 1 MHz. (a) surface,
(b) -2.7mm. R-real part, I-imaginary part. Upper-left
legend indicates radial extent of core-shapes and coil.
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